Deliverable 3.3
Communication protocol prototype simulation and validation
D3.3 Communication protocol prototype simulation and validation

Document Information

<table>
<thead>
<tr>
<th>Programme</th>
<th>FP7-ICT-2013-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project acronym</td>
<td>OS4ES</td>
</tr>
<tr>
<td>Grant agreement number</td>
<td>619302</td>
</tr>
<tr>
<td>Number of the Deliverable</td>
<td>D3.3</td>
</tr>
<tr>
<td>WP/Task related</td>
<td>WP 3 – Task 3.4</td>
</tr>
<tr>
<td>Type (distribution level)</td>
<td>PU</td>
</tr>
<tr>
<td>Start date of project</td>
<td>01/07/2014</td>
</tr>
<tr>
<td>Date of delivery</td>
<td>05/07/2016</td>
</tr>
<tr>
<td>Status and Version</td>
<td>Final version 1.0</td>
</tr>
<tr>
<td>Number of pages</td>
<td>23 pages</td>
</tr>
<tr>
<td>Document Responsible</td>
<td>Stjepan Sučić – Končar</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Stjepan Sučić – Končar</td>
</tr>
<tr>
<td>Reviewers</td>
<td>Markus Breuers - FGH</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author/Reviewer</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>28.05.2016</td>
<td>Stjepan Sučić</td>
<td>Draft ToC</td>
</tr>
<tr>
<td>0.2</td>
<td>05.05.2016</td>
<td>Miro Antonijević</td>
<td>Testing results</td>
</tr>
<tr>
<td>1.0</td>
<td>04.07.2016</td>
<td>Markus Breuers</td>
<td>Reviewed final version</td>
</tr>
</tbody>
</table>
Executive Summary

This deliverable provides testing of the protocol prototype described in D3.2. The deliverable includes validation for the developed communication protocol prototype and gateway for the developed communication protocol prototype regarding several criteria depending on the message exchange patterns.

This deliverable is sectioned as follows:

- Section 1 provides an introduction and table of acronyms
- Section 2 describes testing environment for the XMPP-based IEC 61850 communication API
- Section 3 provides a testing results conclusion
Table of contents

Document Information ...1
Revision History ..2
Executive Summary ..3
Table of contents ..4
List of Tables ...5
List of Figures ...5
1 Introduction ..6
 1.1 Scope of the document ..6
 1.2 Notations, abbreviations and acronyms ...6
2 Communication protocol testing ...7
 2.1 Testing environment ..7
 2.2 Testing arrangements ...8
 2.3 Request-response message testing ...9
 2.3.1 Read-request message testing results ...10
 2.3.2 Write-request message testing results ..12
 2.3.3 Unsolicited message testing ..14
3 Conclusion ..21
Bibliography ...22
List of Tables

Table 1: Acronyms list .. 6

List of Figures

Figure 1: Local-based testing .. 8
Figure 2: LAN-based testing ... 8
Figure 3: WAN-based testing ... 9
Figure 4: Read-request messages (local-based) ... 10
Figure 5: Read-request messages (LAN-based) ... 10
Figure 6: Read-request messages (WAN-based) ... 11
Figure 7: Read-request messages (median comparison) ... 11
Figure 8: Write-request messages (local-based) ... 12
Figure 9: Write-request messages (LAN-based) ... 12
Figure 10: Write-request messages (WAN-based) ... 13
Figure 11: Write-request messages (median comparison) ... 13
Figure 12: Unbuffered reports (local-based) – 1000 messages .. 14
Figure 13: Unbuffered reports (local-based) – process data utilization 14
Figure 14: Buffered reports (local-based) – 1000 messages ... 15
Figure 15: Buffered reports (local-based) – process data utilization 15
Figure 16: Unbuffered reports (LAN-based) – 1000 messages 16
Figure 17: Unbuffered reports (LAN-based) – process data utilization 16
Figure 18: Buffered reports (LAN-based) – 1000 messages .. 17
Figure 19: Buffered reports (LAN-based) – process data utilization 17
Figure 20: Unbuffered reports (WAN-based) – 1000 messages 18
Figure 21: Unbuffered reports (WAN-based) – process data utilization 18
Figure 22: Buffered reports (WAN-based) – 1000 messages .. 19
Figure 23: Buffered reports (WAN-based) – process data utilization 19
Figure 24: Unbuffered reports – comparison ... 20
Figure 25: Buffered reports – comparison ... 20
1 Introduction

1.1 Scope of the document

This deliverable shows results of testing IEC 61850-8-2 communication stack described in the D3.2. The testing has been conducted for several testing environments and for different ACSI services.

1.2 Notations, abbreviations and acronyms

The following table list all notations, abbreviations and acronyms that are used in this document.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSE</td>
<td>Association Control Service Element</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>SSD</td>
<td>Solid State Drive</td>
</tr>
<tr>
<td>XMPP</td>
<td>Extensible Messaging Presence Protocol</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
</tbody>
</table>

Table 1: Acronyms list
2 Communication protocol testing

2.1 Testing environment

The testing environment utilizes two or more testing machines providing IEC 61850-8-2 [1] client, IEC 61850-8-2 server and XMPP relaying server functionalities. The characteristics of the testing machines are as following:

PC 1:
- OS: Linux Ubuntu 14.4 LTS
- Processor: Intel(R) Core(TM) i7 3621QM CPU 2.10 GHz
- RAM: 8.00 GB
- SSD: 250 GB
- XMPP server: OpenFire 4.0.1

PC 2:
- OS: Windows 7 Professional SP1
- Processor: Intel(R) Core(TM) i7 3621QM CPU 2.10 GHz
- RAM: 8.00 GB
- SSD: 250 GB
- XMPP server: OpenFire 4.0.1

PC 3:
- OS: Ubuntu 12.04.5 LTS
- Processor: Intel(R) Xeon(R) CPU E5320 @ 1.86GHz
- RAM: 18 GB
- HD: 150 GB
- XMPP server: OpenFire 4.0.2

LAN network switch:
- CISCO Catalyst 2960 Gigabit Ethernet [2]

WAN network is established between Croatia (PC1 and PC2) and Greece (PC3) over public Internet. The network topology is dependable upon Internet providers.
2.2 Testing arrangements

Depending on the physical setting of the software components there are several testing environments that can be established:

1. Local-based – All software components are on the same testing machine. The communication network is not influenced by the network traffic. The message delivery latencies depend on protocol stack and operating system behaviour.

2. LAN-based - Each of the software components are on different machines but in the same Local Area Network. The message delivery latencies are dependable upon protocol stack, operating systems and LAN network latencies.

3. WAN-based - Each of the software components are on different machines and communicate over Internet. The message delivery latencies are dependable upon protocol stack, operating systems and WAN network latencies.

All testing services are tested by utilizing “ping-pong” testing technique which is illustrated in the following figures. Depending on the testing type the parameter \(t_{\text{total}} \) represents cumulative time intervals for the simulation as described in the following chapters.

![Figure 1: Local-based testing](image1)

![Figure 2: LAN-based testing](image2)
2.3 Request-response message testing

In case of request-response message testing the parameter t_{total} represents the total time starting when the request message was sent from the IEC 61850-8-2 client, it was relayed on the XMPP server, analysed by the IEC 61850-8-2 server, the IEC 61850-8-2 server has sent the response message that way relayed by the XMPP server and received by the IEC 61850-8-2 client. The request-response tests are done for the following ACSI services:

- Read-request
- Write-request

Each test has been repeated 1000 times in order to develop message delivery histogram. All other ACSI services based on read-request message exchange pattern (GetLDDirectory, GetLDDirectory, ..) have also been tested. The resulting behaviour of these services are the same as for the Read-request ACSI service. Therefore, the results for the rest of request-response ACSI services have been omitted in this deliverable. The results are shown in logarithmic scale in order to emphasise outliers.
2.3.1 Read-request message testing results

Figure 4: Read-request messages (local-based)

Figure 5: Read-request messages (LAN-based)
As it can be seen from Figure 7 the median value for Read-request messages is significantly below 500ms what is defined as class B latency in D2.2.
2.3.2 Write-request message testing results

Figure 8: Write-request messages (local-based)

Figure 9: Write-request messages (LAN-based)
As it can be seen from Figure 7 the median value for Write-request messages is significantly below 500ms what is defined as class B latency in D2.2.
2.3.3 Unsolicited message testing

Unsolicited message testing is based on sending unbuffered and buffered reports with different dataset sizes ranging from 10 to 100 elements in dataset. Each test has also been done for 1000 times in order to develop message delivery histograms. Each of the tests also shows the message utilization rate where it can be seen which dataset arrangement is optimal for mapping the process data number into single dataset. The parameter t_{total} represents the total time starting when the request message was sent from the IEC 61850-8-2 client in order to enable report control block, relaying the request through XMPP server, analysing request by the IEC 61850-8-2 server, sending reports by the IEC 61850-8-2 server, relaying the reports by the XMPP server and receiving reports by the IEC 61850-8-2 client. The results are shown in quartile arrangement (1st – orange, 2nd – yellow, 3rd – green, 4th - dark red).

![Unbuffered reports](image1)

Figure 12: Unbuffered reports (local-based) – 1000 messages

![Unbuffered reports](image2)

Figure 13: Unbuffered reports (local-based) – process data utilization
Figure 14: Buffered reports (local-based) – 1000 messages

Figure 15: Buffered reports (local-based) – process data utilization
Figure 16: Unbuffered reports (LAN-based) – 1000 messages

Figure 17: Unbuffered reports (LAN-based) – process data utilization
Figure 18: Buffered reports (LAN-based) – 1000 messages

Figure 19: Buffered reports (LAN-based) – process data utilization
Figure 20: Unbuffered reports (WAN-based) – 1000 messages

Figure 21: Unbuffered reports (WAN-based) – process data utilization
Figure 22: Buffered reports (WAN-based) – 1000 messages

Figure 23: Buffered reports (WAN-based) – process data utilization
The comparison figure shows that report messages also fulfil B class requirements defined by D2.2. The Process data utilization shows that the optimal data set size is 50-60 process data (value, quality, timestamp pairs) elements per dataset.
3 Conclusion

This deliverable describes methods and procedure for testing IEC 61850-8-2 communication protocol stack. For this purpose “ping-pong” tests have conducted for request-response services and variable load tests for the unsolicited services. As the result of these tests have shown it can be concluded that the IEC 61850-8-2 stack developed as a part of OS4ES project is capable of fulfilling class B requirements defined by D2.2 and is a suitable IEC 61850-8-2 implementation for the OS4ES use cases.
Bibliography
